CS257 Introduction to Nanocomputing

Undifferentiated NW Decoders

John E Savage

Lecture Outline

- Two undifferentiated NW Decoders
- Randomized-contact decoder
- Randomized mask-based decoder
- Analysis of "Take What You Get"

The Crossbar Memory

Reducing the Area of the ATC

- The ATC has one word for each of the N_{a} addressable NWs.
- Area of the ATC can be reduced by storing inputs to a CMOS decoder, not one bit per contact group.

How to Differentiate NWs?

- Randomized-contact - Randomized maskdecoder (RCD) based decoder (RMD)

Codewords Assigned During Decoder Assembly

- RCD and RMD both assign codewords stochastically.
- In RCD codeword bits are uncorrelated
- In RMB codeword bits are correlated.
- What effect does correlation among codeword bits have on the number of MWs needed to ensure that all codewords are individually addressable?

Randomized-Contact Decoder

Randomized-Contact Decoder

- Contacts made at random between NWs and MWs.
- If contact made, MW controls NW, i.e. NW resistance is increased.
- Control of NW may not be complete, source of error.

Issues in Assembling NW Decoders

- NW decoders are assembled stochastically.
- Can't predict which NW addresses will occur.
- Some NWs cannot be controlled.
- Under what conditions can many NWs be addressed?
- What's the probability that a decoder has N_{a} addressable NWs?
- How do N_{a} and probability depend on addressing strategy?

Ideal and Non-Ideal Decoder Models

- If NW is controlled, uncontrolled, ambiguous by $j^{\text {th }}$ MW,

$$
c_{j}=1,0, e
$$

- NW codeword $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{M}\right)$
- Ideal (non-ideal) resistive model
- $c_{j}=1$ if resistance $=\infty\left(>r_{\text {high }}\right)$ when $j^{\text {th }} \mathrm{MW}$ active
- $c_{j}=0$ if resistance $=0\left(<r_{\text {low }}\right)$ when $f^{\text {th }}$ MW active
- $c_{j}=e$ (error) otherwise.

NW Addressability

- MW address
- $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{M}\right)$ where $a_{j}=1$ if $j^{\text {th }}$ MW is active
- NW is "on" if its resistance is "low."
- A set of NWs is "off" if cumulative resistance is "high."
- A NW is individually addressable (i.a.) if for some address \boldsymbol{a} it is "on" \& all others are "off."
- In ideal model, codeword \boldsymbol{c} activated by address $\boldsymbol{a}=\overline{\boldsymbol{c}}$ (Boolean complement).

History of the RandomizedContact Decoder (RCD)

- Kuekes and Williams 2001 patent.
- Hoggs, et al (IEEE Trans. Nano, March 2006)
- Analyzed idea using simulation \& empirical analysis
- Our contributions
- Tight probabilistic analysis of RCD.
- Application to decoder with errors.
- Identification of a very good addressing
 strategy.
Nanowire Addressing with Randomized-Contact Decoders1, Eric Rachlin, John E. Savage, Procs. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), pp. 735-742, 2006.

RCD Model

- g contact groups, w NWs/group, $N=g w$ NWs
- $N_{a}=$ number of i.a. NWs
- Calculate probability that N_{a} NWs are i.a.
- $p=$ probability a MW controls a NW
- $q=$ probability a MW doesn't controls a NW
- $r=1-p-q=$ probability error in MW controlling NW
- An error occurs if MW control is uncertain.

Three Decoder Addressing Strategies

- All Wires Addressable (AWA)
- In every contact group all wires are i.a.
- All Wires Almost Always Addressable (AWA ${ }^{3}$)
- Most contact groups satisfy AWA.
- Take What You Get
- Use all i.a. NWs in all contact groups.
- Determine N_{a}, number of i.a. NWs
- Use N_{a} to calculate area of ATC.

Hoeffding's Inequality

- Analyze number of different NW codewords using Hoeffding's Inequality. Let $S=n_{1}+\ldots+n_{t}$ where $\left\{n_{i}\right\}$ are ind. r.v.s in $a_{i} \leq n_{i} \leq b_{i}$. For $d>0$ and $c_{i}=b_{i}-a_{i}$.

$$
P(E[S]-S \geq d) \leq e^{-2 d^{2} / \sum c_{i}^{2}}
$$

"Take What You Get" Strategy

$$
P(E[S]-S \geq d) \leq e^{-2 d^{2} / \sum c_{i}^{2}}
$$

Theorem Let N_{a} be total no. addressable NWs in a decoder with g contact groups, w NWs per group, and $N=g w$ NWs.
$P\left(N_{a} \leq E\left[N_{a}\right]-N k\right) \leq e^{-2 k^{2} N w /(w-1)^{2}}=e^{-2 k^{2} g^{*}}$ for $k>0$ and $g^{*}=g(w /(w-1))^{2}$.

Proof Let $t=g, d=N k, S=N_{a}, c_{i}=(w-1)$ and B be lower bound to $\mathrm{E}\left[N_{a}\right]$. Set $\kappa N=B-k N$

Bounds on Addressable Wires Using Hoeffding's Inequality

Theorem Let N_{a} be the no. of addressable NWs in an RCD with g contact groups, w NWs per group, and N $=g w N W s$ in total. If $\kappa \leq 1-\sqrt{-\ln \left(\varepsilon\left(2 g^{*}\right)\right)}-(w-1)(1-p q)^{M}$,

$$
P\left(N_{a}>\kappa N\right) \geq 1-\varepsilon
$$

Proof $k=B / N-\kappa$. Set κ such that $e^{-2 k^{2} g *}=\epsilon$ To bound $E\left[N_{a}\right]$ let $x_{j}=1$ if n_{i} is i.a., else 0 . Event $e_{k, j}$ is true if n_{k} is on whenever n_{j} is on. Thus, n_{j} is not i.a. if $e_{k, j}$ is true for some $k \operatorname{not} j . E\left[N_{a}\right]=g w P\left(x_{j}=1\right)$.

Bounds on Addressable Wires Using Hoeffding's Inequality

$$
\text { Proof (cont.) But } P\left(x_{1}=1\right)=1-P\left(x_{1}=0\right) \text {. }
$$

$$
P\left(x_{1}=0\right)=P\left(e_{2,1} \cup e_{3,1} \cup \ldots \cup e_{w, 1}\right)
$$

$$
\leq P\left(e_{2,1}\right)+\ldots+P\left(e_{w, 1}\right)=(w-1) P\left(e_{2,1}\right)
$$

But $P\left(e_{2,1}\right)=(1-p q)^{\mathrm{M}}$. Thus,

$$
P\left(x_{1}=1\right) \geq 1-(w-1)(1-p q)^{\mathrm{M}} \text { and }
$$

$$
\begin{aligned}
& E\left[N_{a}\right] \geq B=g w\left(1-(w-1)(1-p q)^{\mathrm{M}}\right) \\
&=N\left(1-(w-1)(1-p q)^{\mathrm{M}}\right) \\
& \text { or } \kappa \leq 1-\sqrt{-\ln \left(\varepsilon /\left(2 g^{*}\right)\right)}-(w-1)(1-p q)^{M} .
\end{aligned}
$$

"Take What You Get" Strategy

Note: Let $\mathrm{p}=\mathrm{q}=1 / 2, w=8, g=175, N=$ $1,400, \varepsilon=.01$, and $\kappa=.733$.
Since $g^{*}=g(w /(w-1))^{2}$ the following condition

$$
\kappa \leq 1-\sqrt{-\ln \left(\varepsilon /\left(2 g^{*}\right)\right)}-(w-1)(1-p q)^{M}
$$

is satisfied with $\mathrm{M}=13$ and $\kappa N=1027$.

- That is, $N_{a} \geq 1,027$ with probability $\geq .99$ when starting with 1,400 NWs, $w=8, M=13$.

Bounds for Other Strategies

See paper.

Comparison of Addressing Strategies

- Assumptions
- Area of ATC used to make comparisons
- Error-free comparisons ($p+q=1$)
- Goal - obtain about $N_{a}=1,000$ addressable NWs.
- All Wires Addressable
- In every contact group all wires are i.a.
- All Wires Almost Always Addressable
- Only use contact groups in which all wires are i.a.
- Take What You Get
- Use all i.a. NWs in all contact groups.

Comparison of Addressing Strategies

- Strategies
- All Wires Addressable (AWA)
- $\mathrm{N}_{\mathrm{a}}=1,024$ for $\mathrm{M}=47, \mathrm{~g}=128, \mathrm{~N}=1,024$.
- All Wires Almost Always Addressable (AWA ${ }^{3}$)
- $N_{a}=1,024$ for $\mathrm{M}=30, \mathrm{~g}=133, \mathrm{~N}=1,064$.
- Take What You Get (TWYG)
- $N_{a}=1,027$ for $\mathrm{M}=13, \mathrm{~g}=175, \mathrm{~N}=1,400$.
- Which strategy is best?
- Second better than first. Is third better than $2^{\text {nd }}$?

Area Estimates

- Area of crossbar
- ATC $-\rho N_{a}\left(M+\log _{2} g\right), \rho=$ area of a CMOS bit
- Standard decoder $-\lambda_{\text {meso }}{ }^{2} g \log _{2} g$
- NWs + MW area - $\left(M \lambda_{\text {meso }}+N \lambda_{\text {nano }}\right)^{2}$
- Assume $\lambda_{\text {meso }}=10 \lambda_{\text {nano }}, \rho=100 \lambda_{\text {nano }}{ }^{2}$
- Area Comparisons Between AWA, AWA³, TWYG
- Can ignore area of standard decoders
- ATC: AWA >> AWA ${ }^{3} \gg$ TWYG
- NWs + MW area: AWA > AWA ${ }^{3}$; TWYG > AWA, AWA ${ }^{3}$
- However, sum of areas is smallest for TWYG.

Take What You Get Strategy RCD vs Uniform NW Decoders

- RCD
- $N_{a}=1,027$ for $M=13, g=175, w=8$.
- Encoded NW Decoder
- M/2-hot NWs (with . 8 penalty for misalignment)
- $N_{a}=1,033$ for $M=8, g=180, w=8$.
- Core-shell NWs (no misalignment penalty)
- $N_{a}=1,013$ for $M=12, g=190, w=8$.
- RCD competitive (M is reasonable).

The Effect of Faults

- The effect of faults measured by $r=1-(p+q)$.
- M set so $\kappa=1-\sqrt{ }-\ln \left(\varepsilon /\left(2 g^{*}\right)\right)-(w-1)(1-p q)^{M}=.733$
- Number of MWs for Take What You Get

$$
M \geq \frac{-\ln (\kappa-\sqrt{-\ln (\epsilon / 2 g *)})}{-\ln (1-p q))}
$$

- Errors change M by factor $\ln (3 / 4) / / \ln (1-p q)$.

$p=q$	α	M
.5	1	13
.4	1.69	22
.3	1.82	40

Conclusions About RCDs

- An area efficient NW RCD addressing strategy identified.
- Analysis shows the impact of faults.
- RCD shown to be a competitive decoder.
- May be easier to implement than other methods.
- Because Take What You Get needs no more than $M=13$, simulation is possible.
- Simulation shows that $\mathrm{M} \sim=10$ suffices!
- The importance of analysis firmly established.

Randomized Mask-Based Decoder

Logarithmic Mask-Based Decoder

- High-K dielectric regions couple NWs \& MWs
- Deposit high-K dielectric regions under MWs

Problems with Logarithmic Mask-Based Decoder

- Can't make regions as small as NW pitch
- Lithography can't reach nm dimensions
- Can't position regions deterministically
- At nanometer scales, positional inaccuracy is large
- Inaccuracy is fractions to multiples of a NW pitch
- Approach: exploit natural randomness

Role of Logarithmic Decoder

- Use standard decoder to resolve uncertainty from N NWs to sets of w NWs.
- \#MWs = $2 \log _{2}(N / w)$ for mask-based decoder
- Use randomized linear decoder (coming) to resolve decoding down to one NW.
- Method can guarantee success to within some predetermined probability

Randomized Linear Decoder

- Randomly shift smallest litho regions (LRs).
- Placement of LRs via masks is random
- w is width and separation of LRs.
- w is fixed!

Model of Linear Decoder

- Deterministic logarithmic decoder resolves set of conducting NWs down to $2 w$ NWs
- It deterministical leaves $2 w$ NWs conducting
- The remaining NWs are non-conducting
- Random linear decoder resolves uncertainty down to one NW with high probability
- It uses multiple randomly displaced LRs

Controllability of NWs by MWs Due to Placement of LRs

- A NW region is controllable by a MW if an LR under it covers the NW enough so a MW field can turn it off
- A NW region is noncontrollable by a MW if an LR under the MW doesn't cover the NW enough that a MW field can turn it off
- This condition can be avoided by making LRs long enough
- A NW region is ambiguous w.r.t. a MW if it is neither controllable or noncontrollable.

Conditions for Individually Controllable Linear Decoder NWs

- Under what conditions can a NW be turned on without turning on other NWs?
- Let $I_{\mathrm{a}, j}$ be intersection between NW n_{a} and MW j.
- Let $C\left(l_{\mathrm{a}, j}\right)=0(1)$ if MW j can (cannot) control n_{a}.
- Let $J_{a}=\left\{j \mid C\left(I_{a, j}\right)=0\right\}$
- If $J_{a} \subseteq J_{b}$ and n_{a} is on, then n_{b} must also be on
- Thus, all NWs can be individually addressed if for no two NWs n_{a} and n_{b} is $J_{a} \subseteq J_{b}$

Restating Controllability Conditions

- When are all $2 w$ NWs controllable?
- $J_{a} \subseteq J_{b}$ cannot hold if there are top and bottom ends of LRs between every pair of NWs.
- For any NW, all NWs above it can be turned off (see dark LRs). Same for NWs below given NW.

Coupon Collector Problem

- C coupon types
- Each box equally likely to contain any type of coupon
- How many boxes should be purchased to collect all C coupons with probability at least $1-\varepsilon$?

Equivalence to Coupon Collector Problem

- LR top (bottom) endpoint coupons:
- A coupon corresponds to the space between a pair of consecutive NW.
- There are $2 \mathrm{w}-1$ top (bottom) endpoint coupons
- Failure coupon:
- Failure corresponds to an ambiguous NW, which occurs when an LR endpoint lands on a NW
- p_{f} is probability of failure

LR Displacement Model

- Simple model for the randomized maskbased decoder:
- The LRs are equally likely to fall anywhere.
- $p_{f} \approx 0.5$ and $p_{s}=1-p_{f} \approx 0.5$
- Probability that ith coupon collected $p_{i}=\left(1-p_{f}\right) / C$
- $C=2 w-1$, the number of consecutive NW pairs

Coupon Collector Problem with Failures

Theorem Let $\mathrm{T}=$ number trials to ensure all C coupons collected with probability $=1-\varepsilon$ when trial fails with prob 1- p_{s} and ith coupon collected with prob $p_{i}=p_{s} / C$. T satisfies

$$
\frac{C}{p_{s}\left(1+p_{s} / C\right)} \ln \left(\frac{C}{\epsilon(1+\epsilon)}\right) \leq T \leq \frac{C}{p_{s}} \ln \left(\frac{C}{\epsilon}\right)
$$

- This result bounds \# MWs in linear decoder.

Performance of Mask-Based Decoder

- $2 \log _{2}(N /(2 w))$ MWs in logarithmic decoder
- Approx $\frac{C}{p_{s}} \ln \left(\frac{C}{\epsilon}\right) \mathrm{MWs}$ in linear decoder where $C=2 w-1$.
- Mask-based decoder uses $\mathrm{M}=2 \log _{2}(N /(2 w))+\left((2 w-1) / p_{s}\right) \log _{2}$ $(2 w-1) / \varepsilon$ MWs.
- When $p_{s}=.5, w=10, \varepsilon=.01, \boldsymbol{M}=\mathbf{2 ~}_{\log _{2}} \boldsymbol{N}+\mathbf{3 2 0} \mathrm{MWs}$ needed to control N NW!
- This improves to $M=156$ if we assume that standard decoder used for contact groups and we tighten bounds. (See Analysis of Mask-Based Nanowire Decoders 1, Eric Rachlin, John E. Savage, to appear IEEE Transactions on Computers, 2007.)

